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ABSTRACT

Wireless communication has been widely adopted owing to its flexibility.
However, it introduces many limitations, such as noise interference for
real-time image transmission, which is key to modern applications, such
as telemedicine. This study seeks to integrate Banach space principles
with deep learning to improve the error correction in wireless image
transmission. This research is justified by the need to maintain high-quality
images in real time, despite unpredictable wireless channel errors. They
proposed a convolutional autoencoder enhanced with an iterative refinement
module that enforces contraction mappings via spectral normalization and
contraction regularization. The model was trained on the CIFAR-10 dataset
using noise simulation and advanced data augmentation, and evaluated
using Peak Signal to Noise Ration(PSNR), Structural Similarity Index
(SSIM), and inference time metrics. The experiments including dynamic
lambda scheduling, demonstrated that under moderate Gaussian noise the
model achieves up to 23.66 dB PSNR and 0.8489 SSIM while processing
over 600 frames per second. Ethical considerations were addressed using
publicly available data, and the code and methodology are well documented
for reproducibility. Study limitations included the use of low-resolution
images and simulated noise, which may not fully capture real-world
challenging conditions. Future work will extend these results to larger and
more complex datasets and real transmission scenarios.
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1. Introduction

In recent years, wireless communication has been widely
deployed across various sectors. Real-time wireless image
transmission is a critical component in modern applica-
tions such as telemedicine, surveillance, and interactive
streaming. The over-the-air channels used in wireless
communication inherently introduce challenges, such as
interference, fading, and packet loss, which compromise
the integrity of real-time image transmission [1].

Wireless channels suffer from errors and packet losses
due to interference, fading, and dynamic channel condi-
tions. These factors significantly degrade the image quality
and user experience [2]. Traditional approaches in wireless
communication are primarily based on separate source
and channel coding techniques, such as Low-Density
Parity-Check (LDPC) and Reed Solomon codes. These
approaches perform well in stable environments, but fall

short when exposed to dynamic and harsh transmission
conditions [3].

Traditional error-correcting codes, including Reed–
Solomon and low-density parity-check (LDPC) codes,
often introduce latency and may fail under unpre-
dictable conditions [3]. Consequently, there is an increasing
demand for adaptive and robust methods that can main-
tain real-time image quality. Deep learning has emerged as
a promising approach to tackle these challenges by offering
the ability to learn complex noise patterns and efficiently
restore images [4], [5]. Joint source-channel coding (JSCC),
enhanced by deep learning, enables the simultaneous
optimization of compression and error resilience, signifi-
cantly improving performance in noisy environments [5].

Integrating the Banach space principles into deep learn-
ing provides a theoretical foundation for stability and
convergence during iterative error correction [6]. The

Vol 4 | Issue 5 | October 2025 33

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://crossmark.crossref.org/dialog/?doi=10.24018/ejai.2025.4.5.71&domain=pdf
http://dx.doi.org/10.24018/ejai.2025.4.5.71
mailto:cgkinyua@chuka.ac.ke


AI-Driven Error Correction for Real-Time Wireless Image Transmission: Integrating Banach Space Principles into Deep Learning Gitonga et al.

application of contraction mapping through spectral nor-
malization and contraction regularization ensures that the
error-correction outputs are reliable and consistent. This
study bridges mathematical theorems with advanced neu-
ral architectures to address this critical gap in achieving
reliable real-time image transmission.

The Banach space theory further strengthens the pro-
posed approach by ensuring convergence in iterative
error-correction processes. In particular, contraction map-
ping guarantees that the outputs remain bounded and
stable, even when subjected to substantial noise perturba-
tions. This mathematical foundation addresses a critical
limitation of purely data-driven methods, which may
diverge under extreme conditions [6]. With advancements
in GPU hardware, such as Nvidia A30, real-time pro-
cessing of complex models has become feasible without
significant latency [7].

Despite these advancements, several challenges remain.
The following questions form the core motivation of this
study. They guided both the theoretical analysis and the
experimental validation of this research. 1) How can robust
training be ensured across diverse wireless conditions? 2)
Can Banach space properties universally guarantee con-
vergence beyond the controlled simulations? 3) How does
the proposed framework compare to state-of-the-art error-
correction techniques?

1.1. Problem Statement
Real-time wireless image transmission often encoun-

ters unpredictable errors due to fading, interference, and
limited bandwidth. Conventional error-correcting codes,
while effective under stable conditions, struggle to adapt
to rapid channel fluctuations and impose computational
overhead that may lead to latency. For time-critical appli-
cations, such as telemedicine and interactive streaming,
these limitations result in degraded image quality or delays
in data transmission. Therefore, there is an urgent need
for a robust, low-latency error-correction technique that
adapts to changing channel states while ensuring stable
image recovery.

This study proposes the integration of deep learning
with Banach space principles to address these challenges.
The goal was to develop an end-to-end architecture capa-
ble of minimizing error artifacts, maintaining real-time
performance on modern GPU hardware, and verifying
convergence and reliability across various transmission
scenarios. In addition, evaluating the computational effi-
ciency of different hardware configurations will ensure the
feasibility of practical deployment.

1.2. Research Objectives
The objectives that this research aims to achieve are to;

1. Develop a deep learning framework for real-time
wireless image transmission that integrates joint
source-channel coding with an AI-driven decoder.

2. Incorporate Banach space properties to ensure
iterative stability and convergence during error
correction.

3. Evaluate the proposed method on a GPU-based
setup (e.g., Nvidia A30) to confirm its low latency
and high fidelity under simulated noisy conditions.

4. Benchmarking the proposed framework against clas-
sical error-correction strategies and demonstrating
improvements in image quality and transmission
reliability.

5. The computational efficiency of the model was
assessed using various hardware configurations to
understand its scalability and practical application.

1.3. Significance of the Study
This paper presents a novel deep-learning approach

for real-time wireless image transmission. This approach
integrates Banach space contraction principles with iter-
ative refinement combined with dynamic regularization.
The proposed autoencoder-based model demonstrated
significant improvements in reconstruction accuracy and
perceptual quality under challenging noise conditions. The
study simulated real-world noise through advanced data
augmentation and stabilizing training using contraction-
based regularization.

The model achieved higher PSNR and SSIM scores
while maintaining ultrafast inference times suitable for
real-time applications. The integration of mathemati-
cal rigor with a practical neural network design offers
a scalable, efficient, and robust framework for noise-
resilient image transmission in modern communication
environments.

The rest of this paper is organized as follows. Section 2
presents related works in the literature. Section 3 discusses
the methodology of this study. Section 4 presents and
discusses the results. Finally, Section 5 concludes the study
with recommendations in Section 6.

2. Literature Review

In this section, we present a review of literature related
to this research.

2.1. Historical Context of Wireless Image Transmission
Wireless image transmission has evolved significantly

from the early days of mobile communications, when
bandwidth limitations and rudimentary transmission tech-
niques restricted multimedia content to low-resolution
and text-based applications [1]. Early cellular networks,
such as 2G and 3G, primarily facilitated text messaging
and minimal multimedia support through General Packet
Radio Service (GPRS) and Enhanced Data Rates for GSM
Evolution (EDGE) [8]. As mobile technology progressed,
fourth-generation (4G) networks introduced orthogonal
frequency-division multiple access (OFDMA).

OFDMA significantly boosts the data throughput for
real-time video and image transmission [9]. The advent
of 5G has further pushed boundaries. It offers ultra-low
latency and high bandwidth, which makes high-fidelity
real-time image transmission a practical reality [10].

Despite these advancements, wireless image transmis-
sion continues to face challenges related to dynamic
channel conditions, fading, and packet loss, which severely
affect image quality [11]. Traditional error correction
methods such as Reed Solomon and Low-Density Parity-
Check (LDPC) codes offer protection against errors, but
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often fail under rapid channel variations or high-resolution
data [12]. Emerging AI-driven methods are increasingly
being considered to address these challenges by leveraging
deep learning to adaptively correct errors and maintain
transmission quality [13].

2.2. Traditional Error Correction Techniques

Traditional error-correction methods play a fun-
damental role in ensuring data reliability in wireless
communication. Forward Error Correction (FEC)
techniques, such as Reed–Solomon and Low-Density
Parity-Check (LDPC) codes, are widely used to cor-
rect data blocks without the need for retransmissions,
employing redundancy and iterative decoding to recover
lost information [12]. Automatic Repeat Request (ARQ)
protocols and Hybrid ARQ schemes are built on this using
feedback mechanisms to selectively retransmit erroneous
packets. In particular, hybrid ARQ attempts to balance
robustness and latency by combining FEC with selective
retransmission [14]. In addition to these communication
oriented approaches, mathematical frameworks also
provide essential foundations for stability and convergence
in error-correction processes. Functional analysis, partic-
ularly Banach and Sobolev space theory, offers rigorous
tools for understanding iterative stability in complex
systems [15]. At the same time, objective image quality
assessment has advanced through the development of the
Structural Similarity Index (SSIM), which better aligns
with human perception compared to earlier pixel-based
metrics [16]. These theoretical and perceptual insights
complement communication strategies, creating a broader
foundation for reliable real-time image transmission.

Despite the success of traditional error-correction mech-
anisms in conventional wireless systems, these classical
approaches exhibit limitations when applied to high-
resolution or real-time image transmissions. FEC and
ARQ systems generally assume static or predictable error
environments and lack the adaptability to cope with
rapidly changing channel conditions or burst errors. Fur-
thermore, they treat all parts of an image equally, failing
to prioritize the visually critical regions. This results in
increased latency, degraded image quality, and inconsistent
performance, particularly in bandwidth.

2.3. Deep Learning Approaches for Wireless Image
Transmission

Deep learning has introduced flexible and adaptive
methods for wireless image transmission with notable
improvements over traditional coding schemes. A promi-
nent approach is joint source–channel coding (JSCC),
which integrates compression and error correction into
a unified neural framework. By encoding images into
robust latent representations, JSCC models maintain
image fidelity even under adverse transmission conditions,
often outperforming classical separated coding strategies
[17], [18].

Convolutional Autoencoders (CAEs) further enhance
resilience by learning to reconstruct distorted images
through the supervised training of noisy inputs. Their
architecture efficiently preserves spatial structures, making

them suitable for real-time scenarios in which low latency
and robustness are essential [18].

Generative Adversarial Networks (GANs) offer another
layer of refinement, particularly to enhance perceptual
quality. Through adversarial training, GANs produce
more realistic reconstructions with sharper details, par-
ticularly in texture-rich regions. These capabilities make
GAN-based methods ideal for applications requiring high-
quality visual outputs, despite significant transmission
errors [19].

2.4. Banach Space Concepts in Convergence and
Stability

The Banach space theory offers a rigorous mathematical
foundation for ensuring convergence and stability in iter-
ative learning and error-correction processes. The core of
this theory lies in the Banach Fixed-Point Theorem, which
asserts that contraction mappings in a complete metric
space will converge to a unique fixed point. When applied
to deep learning, these contraction principles guarantee
that iterative outputs remain stable, even under significant
noise [20].

Incorporating Banach space principles into neural net-
work architectures enhances the reliability of real-time
error corrections. This ensures that the reconstructions do
not diverge during training or inference. By embedding
contraction constraints into layers or refinement modules,
networks can maintain predictable and robust behavior,
which is an essential characteristic for deployment in
volatile wireless environments [20].

2.5. Benchmarking and Performance Metrics

Robust benchmarking and performance evaluation are
crucial for assessing the effectiveness of wireless image-
transmission systems, particularly those enhanced by deep
learning. Commonly used quantitative metrics include
Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-
ilarity Index Measure (SSIM) [4], [21]. PSNR assesses
pixel-level fidelity by comparing the reconstructed image
to the original in terms of logarithmic decibel values,
whereas SSIM evaluates perceptual quality by measur-
ing structural and luminance similarities between the two
images [18], [19]. Theses metrics are widely accepted owing
to their ease of computation and correlation with visual
distortions.

However, PSNR and SSIM alone may not fully capture
the visual realism of the reconstructed images, particularly
in human-centric applications. To address this limitation,
recent studies have proposed additional perceptual qual-
ity metrics, such as the Learned Perceptual Image Patch
Similarity (LPIPS) and the Mean Opinion Score (MOS),
which better align with subjective visual assessment [19],
[20]. These emerging metrics help bridge the gap between
objective evaluation and user experience.

In addition to image quality, real-time performance
metrics play a critical role in determining the feasibility
of deployment of transmission systems. Key indicators
include inference latency, measured in milliseconds per
frame, and throughput, typically expressed as frames per
second (FPS). High FPS and low latency are essential for
applications such as live video streaming, telemedicine, and
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interactive surveillance, where delays can compromise the
user experience or system reliability [21].

Energy efficiency and memory usage are also increas-
ingly important benchmarks, especially in edge computing
contexts, where devices operate under strict resource con-
straints. Evaluating power consumption, model size, and
inference efficiency allows researchers to tailor models for
real-world deployment on embedded or mobile hardware
[21]. However, this study was limited by the PSNR and
SSIM metrics. Future research would therefore build on
the findings of this research to extend it to additional
perceptual quality metrics.

2.6. Gaps in the Literature and Contribution of this Study

Although deep learning has advanced wireless image
transmission, significant gaps remain, including limited
scalability, lack of real-world generalizability, static reg-
ularization, weak perceptual quality assessment, rigid
architectures, and insufficient focus on energy efficiency.
This study has several limitations. We introduced a scal-
able and modular deep learning framework designed for
real-time performance, achieving a 614.47 FPS. Although
tested on CIFAR-10, the architecture supports future
adaptation to higher-resolution data. To enhance realism,
the model was evaluated under varied noise conditions
beyond typical static simulations using Gaussian and burst
noise to reflect diverse wireless distortions.

A key strategy for the proposed method is the adop-
tion of dynamic contraction regularization. This improved
stability and adaptability by varying the regularization
strength (λ) during training. This contributed to more
robust reconstructions compared with the fixed regular-
ization strategies. The study also considers computational
efficiency by optimizing the inference time and model
simplicity. This is recommended in constrained environ-
ments. These contributions collectively bridge theoretical
and applied research by offering a foundation for scalable,
stable, and practical wireless image-restoration systems.

3. Methodology

In this section, we present the research methodology
adopted in this study.

3.1. Research Design and Experimental Setup

We adopted an experimental research design to evaluate
the effectiveness of integrating the Banach space prin-
ciples into deep learning models for error correction in
real-time wireless image transmission. This study aims
to formulate the problem of image denoising, focusing
on reconstructing clean images from artificially corrupted
versions that simulate real-world wireless transmission
errors. The experiments involved artificially corrupting
CIFAR-10 dataset images to mimic real-world wireless
transmission errors. We trained the models to restore the
original clean images by minimizing the reconstruction
errors. This experimental setup allowed us to evaluate the
model performance under varying noise conditions, such
as Gaussian and salt-and-pepper noise.

TABLE I: Python Scripts

Script name Purpose

Autoencoder
simulation.py

Initial training of the convolutional
autoencoder model, establishing baseline

performance.
Autoencoder
refinement.py

Enhanced autoencoder with iterative
refinement to improve PSNR and SSIM

metrics.
Autoencoder refinement

v2.py
Further refined model with explicit

validation splits to prevent overfitting.
Hyperparameter

tuning.py
Automated hyperparameter testing,
saving results to CSV for analysis.

Evaluate test set.py Evaluation on CIFAR-10 test set,
generating PSNR, SSIM, and inference

time metrics.
Ablation and data
augmentation.py

Ablation study comparing baseline versus
refined models and augmentation

effects.
Banach integration

experiments.py
Tests Banach space principles with

contraction regularization and stability
analysis.

Banach comparison
analysis.py

Comparative analysis of models trained
with and without Banach

integration.
Extended evaluation.py Detailed testing under varied noise

conditions, generating comprehensive
robustness metrics.

Research extended
pipeline.py

Complete integrated research pipeline for
dynamic contraction regularization

and visualization.

3.2. Python Code Structure and Organization

To ensure reproducibility, modularity, and maintainabil-
ity, the research implementation was organized through
several Python scripts, each serving a specific role within
the pipeline, as shown in Table I.

3.3. Dataset and Preprocessing

The CIFAR-10 dataset was used in this study. It consists
of 60,000 labeled color images, each with dimensions of
32 × 32 pixels. The dataset was systematically divided into
three subsets: the Training Set (45,000 images), Validation
Set (5000 images), and Test Set (10,000 images). This
division allows for robust model training and evaluation.

To enhance the ability of the model to generalize to
diverse conditions, various data augmentation techniques
have been employed. Basic augmentations include convert-
ing images into tensor representations and normalizing
their values. Extended augmentation techniques include
horizontal flipping, random cropping, rotation, and color
jittering. These augmentations increase the diversity of the
training data and improve the robustness of the model
against unseen noise patterns.

To simulate real-world wireless transmission errors, we
introduced Gaussian noise and salt-and-pepper noise of
varying intensities during training. Gaussian noise was
simulated with random signal-to-noise ratios, whereas salt-
and-pepper noise mimicked burst errors by randomly
flipping pixel values, as shown in Fig. 1. This was per-
formed to ensure that the model could adapt to different
noise scenarios and remain robust across varying condi-
tions.
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Fig. 1. Gaussian noise simulated.

Fig. 2. Contraction mappings, source (author).

3.4. Model Architecture and Banach Space Integration

The core of the methodology involved designing a deep
convolutional autoencoder (CAE). This model was chosen
for its ability to encode noisy images into compressed
latent representations while preserving essential features.
The encoder network performs dimensionality reduction,
whereas the decoder network reconstructs the original
image from the latent representations.

To enhance stability, we incorporated Banach space
principles by enforcing contraction mappings using the
Banach Fixed-Point Theorem. This was achieved by
embedding iterative refinement modules in the model
architecture. Each iteration in the iterative refinement aims
to progressively improve the image reconstruction quality,
as shown in Fig. 2.

The iterative modules helped stabilize the output of the
model by reducing the risk of divergent reconstructions.
Spectral normalization was applied to maintain a con-
strained Lipschitz constant in the convolutional layers,
ensuring that minor variations in the input would not

disproportionately affect the output. This regularization
technique is critical for maintaining stable and predictable
reconstruction performance.

3.5. Model Training and Hyperparameters

Training the model involved the use of the Adam opti-
mizer, which was chosen for its adaptability and efficiency
in handling large datasets. The model was trained with the
following hyperparameters to leverage GPU capabilities:
Learning Rate: 1 × 10−3, Batch Size: 64, epoch: 100, and
Precision; Mixed Precision (FP16).

The dynamic contraction regularization strategy
involved progressively increasing the regularization param-
eter λ from 0.01 to 0.1 over the training epochs. This
gradual increase allowed the model to strike a balance
between the reconstruction quality and contraction
stability.
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Fig. 3. Models comparison on PSNR and SSIM.

4. Results and Discussion

In this section, we present experimental results and
provide a detailed analysis. The methodology compares
baseline models with refined models incorporating con-
traction mappings, dynamic contraction regularization,
iterative refinement, and advanced data augmentation.

Fig. 3 shows a comparison of the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure
(SSIM) between the baseline and enhanced (proposed)
models. The left subplot illustrates the PSNR values,
showing that the enhanced model (blue bar) achieves a
significantly higher PSNR ( 29 dB) than the baseline model
(green bar, 20 dB), indicating better pixel-level fidelity.
The right subplot displays the SSIM values, where the
enhanced model again outperforms the baseline, achieving
a value above 0.85, reflecting improved structural and per-
ceptual similarity. These metrics collectively demonstrate
the superiority of the enhanced model in preserving the
image quality during wireless transmission.

To statistically validate the model’s improvements,
paired t-tests were conducted between the baseline and
the PSNR and SSIM scores of the proposed model.
The results indicated statistically significant improvements
(p < 0.05), confirming the effectiveness of the model
in enhancing the image quality under noisy conditions.
The finalized autoencoder architecture featured symmetric
convolutional encoding-decoding layers with batch nor-
malization. Contraction regularization was applied in both
the latent-space and output layers to promote robust fea-
ture representation and maintain consistent reconstruction
accuracy.

4.1. Baseline Autoencoder Performance
Initially, we trained a baseline convolutional autoen-

coder without Banach integration or iterative refinement.
The baseline model achieved a Peak Signal-to-Noise Ratio
(PSNR) of 20.85 dB and a Structural Similarity Index
Measure (SSIM) of 0.7133 on the CIFAR-10 validation

TABLE II: Baseline Model Performance Metrics

Metric Value

PSNR (dB) 20.85
SSIM 0.7133

Inference time (ms) 0.63

TABLE III: Improved Performance through Iterative Refinement

Metric Value

PSNR (dB) 28.83
SSIM 0.873

Inference time (ms) 0.02

set. The average inference time per image was 0.63 ms,
confirming the feasibility of real-time processing. These
baseline results provide a reference point for measuring the
improvements offered by the proposed methods, as shown
in Table II.

4.2. Evaluation and Testing Framework

The model evaluation focused on the CIFAR-10 test set.
We measured the Peak Signal-to-Noise Ratio (PSNR) to
assess pixel-level reconstruction fidelity, Structural Sim-
ilarity Index Measure (SSIM) to quantify perceptual
similarity relative to human vision, and Inference Time per
image to verify real-time performance requirements. The
model was subjected to diverse noise conditions, including
Gaussian and burst noises, to assess its robustness. The
performance metrics were calculated and visualized to
effectively compare the baseline and enhanced (proposed)
models, as shown in Fig. 3.

4.3. Improved Performance through Iterative Refinement

The integration of iterative refinement modules into the
autoencoder architecture led to measurable improvements
in the reconstruction quality. The enhanced model was
trained for 20 epochs with early stopping based on the
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Fig. 4. Training vs. validation loss curves for iterative refinement model.

validation loss. The training loss consistently decreased,
reaching 0.0045, whereas the validation loss stabilized at
0.0046, indicating convergence without overfitting. Perfor-
mance on the CIFAR-10 test set under standard Gaussian
noise conditions showed clear gains of PSNR of 28.83 db,
SSIM of 0.873 and Inference time of 0.02 ms as shown on
Table III.

These improvements demonstrate the clear advantage
of iterative refinement of the proposed model in reducing
reconstruction errors and enhancing visual quality.

Fig. 4 depicts the training and validation loss curves over
20 epochs for the iterative refinement model. The training
loss initially decreased sharply, indicating rapid learning
during the early stages. After approximately five epochs,
the reduction in the training loss stabilized and converged
steadily. This signaled an effective training without over-
fitting. The validation loss also followed the trend closely,
quickly decreasing and leveling off alongside the train-
ing loss. This confirms the generalization of the model.
The small gap between the training and validation curves
throughout the training period suggests that the iterative
refinement model effectively balances the learning accu-
racy and generalization performance. This demonstrates
the stability and robustness of the learning image recon-
struction tasks.

4.4. Ablation and Data Augmentation Studies

Ablation experiments were conducted to evaluate the
individual and combined effects of iterative refinement
and data augmentation strategies on the model perfor-
mance. The baseline model, which lacked refinement and
augmentation, achieved a PSNR of 20.24 dB and SSIM
of 0.7016. Introducing iterative refinements alone resulted
in improved fidelity, increasing the PSNR to 24.01 dB
and the SSIM to 0.8112, confirming the efficacy of the
iterative correction mechanism in reducing noise artifacts
and enhancing structural integrity.

Interestingly, when basic data augmentation techniques
were applied, such as horizontal flips and random crops,

the results showed no significant gain, with a slight reduc-
tion in SSIM to 0.7989 and PSNR dropping to 23.23
dB. This indicates that basic augmentation may not suf-
ficiently enhance the robustness of the model against
wireless transmission distortions. However, when extended
augmentation strategies were introduced, including color
jittering, rotation, and noise injection, perceptual quality
improved significantly. While the PSNR slightly dropped
to 23.02 dB, the SSIM increased to 0.8231, the highest
among all configurations. This trade-off illustrates that
extended augmentation enhances perceptual consistency
and visual quality, even if the pixel-level similarity (as mea-
sured by PSNR) does not improve proportionally. Fig. 5
shows a performance comparison.

The refined model with iterative refinements achieves
the highest PSNR, indicating improved numerical fidelity.
In contrast, the refined model with extended augmentation
yields the best SSIM, reflecting higher perceptual similar-
ity. This shows that refinements and augmentations impact
fidelity and perceptual quality differently.

4.5. Banach Space Integration Contraction
Regularization

To evaluate the impact of Banach space principles on
the robustness and convergence of the model, we imple-
mented contraction regularization using different values
of the regularization strength (λ). The performance results
revealed a strong dependence on λ, highlighting the impor-
tance of balancing stability and expressiveness. When a
relatively high contraction strength was applied (λ = 0.10),
the model achieved the best performance with a PSNR
23.30 dB and SSIM of 0.8038. This result demonstrates
that enforcing a meaningful contraction level encourages
convergence to more stable and accurate reconstructions.

On the other hand, reducing λ to 0.05 led to a significant
performance drop (PSNR = 19.07 dB, SSIM = 0.6692),
indicating that excessive regularization constrained the
model too tightly, impairing its learning capacity. Con-
versely, with a lower λ of 0.01, the model gained some
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Fig. 5. Comparison of PSNR and SSIM across model variants.

Fig. 6. PSNR (left) and SSIM (right) vs. contraction regularization.

flexibility but lacked sufficient regularization to stabi-
lize the outputs, achieving a modest PSNR of 21.28 dB
and SSIM of 0.7173. These findings confirm that moder-
ate contraction regularization strikes an optimal balance
between noise suppression and the preservation of visual
detail. These trends are illustrated in Fig. 6.

4.6. Impact of Noise Intensity and Distribution on Image
Reconstruction Performance

Fig. 7 illustrates how the model performance, measured
by PSNR and SSIM, is affected by varying degrees of
Gaussian and burst noise. For Gaussian noise, as the noise
factor increases from 0.05 to 0.20, both PSNR and SSIM
steadily decrease, indicating that higher noise significantly
affects the image reconstruction quality, reducing both
pixel-level accuracy and perceptual similarity.

A similar trend was observed for burst noise: as the
block size of the noise increased, both the PSNR and
SSIM values sharply declined. This confirms that larger
burst errors degrade image reconstruction more severely.
These findings emphasize the sensitivity of the model to

different noise intensities and distributions, underscoring
the importance of training with diverse and challenging
noise scenarios to enhance the robustness in real-world
wireless image transmission.

For Gaussian noise, increasing the noise factor leads to
gradual declines in both PSNR and SSIM. For burst noise,
increasing block size results in sharper drops, with a more
severe impact on SSIM. This indicates that burst noise
introduces stronger perceptual degradation compared to
Gaussian noise.

4.7. Qualitative Evaluation and Discussion

This study qualitatively assessed the reconstructed
images and their error maps to understand the prac-
tical effectiveness of our proposed model against the
baseline approach. The visual outputs indicated notice-
able improvements with the enhanced model, particularly
owing to the inclusion of dynamic contraction regular-
ization guided by Banach space principles. Error maps
provided a clear illustration of these enhancements, show-
ing significant reductions in reconstruction errors around
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Fig. 7. Figure: Model performance under varying noise conditions.

Fig. 8. Comparative reconstruction scenario using the baseline autoencoder.

critical features, such as edges and textured regions. The
images produced by the refined model appear sharper,
clearer, and structurally more accurate. The qualitative
superiority of our approach is particularly pronounced
under challenging conditions involving Gaussian and
burst noise.

In contrast, the baseline model outputs frequently
exhibited blurred features and structural distortions,
particularly under higher noise intensities. The image
reconstructions presented in this paper provide visual
comparisons that distinctly illustrate these improvements,
showcasing how the enhanced model consistently delivers
better perceptual results. These qualitative gains directly
correlated with the quantitative SSIM improvements noted
earlier, confirming the model’s enhanced alignment with
human visual perception.

Specifically, our analysis provides several critical
insights. First, the iterative refinement approach signifi-
cantly enhances the reconstruction quality by progressively
correcting distortions and driving the network toward
convergence. Second, the implementation of advanced
data augmentation techniques that closely mimic real-
world noise substantially improves the generalization
capability of the model. Third, incorporating moderate
contraction regularization grounded in Banach space
theory improves the robustness of the model, prevents
overfitting, and ensures stable, consistent outputs. Finally,
dynamically adjusting the strength of contraction regu-
larization throughout the training effectively balances the
accuracy with noise resilience.

Overall, integrating theoretical concepts from functional
analysis into practical deep learning strategies has proven
to be highly effective for achieving robust, high-quality
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Fig. 9. Burst noise reconstruction and error maps.

Fig. 10. Gaussian noise reconstruction and error maps (Baseline model).

Fig. 11. Reconstruction performance for CIFAR-10 images where λ set at 0.10.

real-time image transmission. These findings not only
validate our methodological approach but also suggest
a promising direction for future research and practical
applications in environments prone to transmission noise.

Fig. 8 illustrates a comparative reconstruction scenario
using the baseline autoencoder. The original CIFAR-10
images, reconstructed versions, and associated error maps
were presented. The reconstruction quality was noticeably
inferior compared to the models enhanced by Banach

space integration and iterative refinement. Error maps
reveal widespread distortions, emphasizing the limited
capability of the baseline model to handle complex noise
conditions, thus underscoring the need for enhanced
methodologies.

Fig. 9 shows CIFAR-10 images corrupted by burst noise
along with reconstructions generated by the autoencoder
enhanced with dynamic contraction regularization and
advanced augmentation. The bottom row contains error
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Fig. 12. Gaussian noise reconstruction and error maps (Dynamic contraction with advanced augmentation).

Fig. 13. Visual qualitative analysis of the reconstruction performance of the autoencoder under burst noise conditions.

maps illustrating the residual reconstruction errors. The
enhanced model effectively restores the images, signifi-
cantly reducing the visual distortions caused by burst
noise. The error maps highlight the remaining minor
errors, primarily around the edges and the detailed
textures. This underscores the effectiveness of iterative
refinement.

Fig. 10 compares the original images corrupted with
Gaussian noise and their reconstructions generated by the
baseline autoencoder. The error maps provided here clearly
reveal significant residual noise and reconstruction errors,
which are particularly noticeable around the key image
details. These results reinforce the advantages of inte-
grating the dynamic contraction and iterative refinement
techniques into the model architecture.

Fig. 11 shows the reconstruction performance for
CIFAR-10 images using a contraction-regularized model
with λ set to 0.10. The reconstructions presented notable
visual quality improvements relative to the baseline mod-
els, effectively mitigating noise-induced artifacts. The error
maps highlight the improved precision around image struc-
tures, clearly demonstrating the benefits of a moderate
regularization factor in balancing noise suppression and
detail preservation.

Fig. 12 shows the original CIFAR-10 images with
Gaussian noise, their reconstructions using the refined
autoencoder (dynamic contraction and advanced aug-
mentation), and the corresponding error maps. These
reconstructions demonstrate significant improvements in
image clarity and quality, effectively removing Gaussian
noise artifacts. The error maps indicate precise areas of
minor inaccuracies, revealing the model’s strong perfor-
mance in accurately restoring subtle image features.

Fig. 13 shows a qualitative visual analysis of the recon-
struction performance of the autoencoder under burst
noise conditions. The top row displays the original
images from the CIFAR-10 dataset affected by burst
noise, whereas the middle row shows the corresponding
reconstructions generated by the proposed deep con-
volutional autoencoder. The bottom row presents the
associated error maps, highlighting the areas with sig-
nificant reconstruction errors. The visual analysis clearly
demonstrates that the model effectively corrects large
blocks of burst noise, significantly restoring the image
details. However, challenging regions, particularly around
object edges and textured areas, retain some artifacts.
These error maps provide critical insight into the model
performance, emphasizing the efficacy of iterative refine-
ment and Banach space-based contraction regularization
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in substantially reducing visual distortions in noisy wire-
less image transmissions.

All quantitative metrics, PSNR, SSIM, and inference
times, along with the scripts used to generate noise pat-
terns, training logs, and model checkpoints, were hosted at
https://github.com/cgkinyua/deep_learning_project. This
open archive allows readers to verify our comparisons
between baseline and banach-integrated models and to
reproduce every figure and table presented in this paper.

5. Conclusion

The primary objective of this study is to develop a
convolutional autoencoder model that leverages contrac-
tion regularization and iterative refinement to maintain
high-quality reconstructions, even under challenging noise
conditions. The authors demonstrated the successful inte-
gration of Banach space principles into an AI-driven
error correction for real-time wireless image transmission.
By combining deep learning frameworks with functional
analytic concepts, we have achieved significant advance-
ments in both the accuracy and robustness of image
reconstruction.

The results show that the proposed model consistently
outperformed the baseline autoencoder, demonstrating
substantial improvements in both the Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM). Furthermore, the model maintained an
inference speed of 614.47 frames per second, making
it highly suitable for real-time applications. The inte-
gration of contraction mappings, guided by the Banach
Fixed-Point Theorem, proved instrumental in enhancing
model stability and ensuring convergence. The iterative
refinement process further contributes to error reduction
and robust reconstruction, significantly outperforming
traditional approaches.

The dynamic contraction regularization strategy, which
varied the regularization strength during training, effec-
tively balanced the reconstruction accuracy with the model
stability. This combination of methods ensured that the
model could maintain a high performance even in the pres-
ence of diverse noise scenarios, including Gaussian and
burst noise. The authors demonstrated the practical feasi-
bility of the proposed model in a GPU-based setup using
an NVIDIA A30 GPU. The real-time processing capability
of the model, combined with its enhanced reconstruction
quality, positions it as a viable solution for applications
such as telemedicine, interactive video streaming, and
surveillance systems where reliable image transmission is
crucial.

Nevertheless, some limitations of this study persist. The
performance of the model was primarily evaluated using
the CIFAR-10 dataset, which consists of low-resolution
images. Future research will focus on adapting this archi-
tecture to handle higher-resolution data more efficiently.
Moreover, while simulation-based evaluation provides
a controlled environment to assess model robustness,
real-world testing under varying transmission conditions
remains essential for fully validating the model’s practical
utility. Additionally, there is the potential to explore more
advanced network architectures and hybrid approaches

that could further enhance the performance without com-
promising real-time processing.

The promising results achieved through this research
underscore the potential of combining deep learning
with Banach space principles to address error correc-
tion challenges in wireless image transmission. Embedding
theoretical rigour into practical applications. This study
bridges the gap between mathematical theory and real-
world implementations. Further advancements could
include refining the contraction scheduling mechanism to
make it adaptive based on noise level variations, and inte-
grating transformer-based architectures to enhance feature
extraction.

This study lays a strong foundation for the future explo-
ration of robust, real-time image transmission solutions
driven by cutting-edge mathematical principles and AI
innovations. We have made all the research materials for
this study public to advance the research. By releasing our
full experimental pipeline at https://github.com/cgkinyua/
deep_learning_project, we have ensured transparency and
facilitated further innovation. We encourage the research
community to inspect, reproduce, and build upon our work
to advance robust real-time wireless image transmission.

6. Recommendations

This study successfully integrated Banach space prin-
ciples into deep learning architectures to enhance the
error correction for real-time wireless image transmis-
sion. Despite achieving promising results in terms of both
accuracy and inference speed, some limitations remain,
which suggest clear directions for future research. Primar-
ily, the use of the CIFAR-10 dataset, which consists of
low-resolution images, limits the scalability of the model
to more complex or high-resolution data. Future efforts
should investigate how the model performs on large-scale
image or video datasets, potentially through the use of
multiscale architectures or transformer-based networks to
improve feature extraction.

Although simulation-based experiments with Gaus-
sian and burst noise demonstrated the robustness of the
model, these scenarios do not fully reflect real-world
wireless environments. Therefore, conducting real-time
experiments under dynamic, noisy transmission conditions
is essential to validate the model’s practical applicability
in fields such as telemedicine, surveillance, and interactive
media. Another area that requires attention is the model’s
use of manually tuned dynamic contraction regulariza-
tion. Although effective, its reliance on static scheduling
may hinder flexibility. Adopting adaptive regularization
techniques that adjust λ in response to real-time noise
levels can improve robustness and generalizability during
deployment.

Furthermore, although the model ran efficiently on
an NVIDIA A30 GPU, deployment on edge devices
with limited processing capacity remains a challenge.
Research on lightweight architectures and model opti-
mization strategies, such as pruning, quantization, and
knowledge distillation, could enable broader deployment
without sacrificing accuracy. In conclusion, this study
provides a strong foundation for robust and theoretically
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grounded wireless image transmissions. Future research
can further enhance the practical and technical value
of these methods by scaling to high-resolution data,
conducting real-world testing, developing adaptive reg-
ularization strategies, improving model efficiency, and
exploring hybrid architectures.
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